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We compute a nontrivial infrared ~b~-fixed point by means of an interpolation 
expansion in fixed dimension. The expansion is formulated for an infinitesimal 
momentum-space renormalization group. We choose a coordinate representa- 
tion for the fixed-point interaction in derivative expansion, and compute its 
coordinates to high orders by means of computer algebra. We compute the 
series for the critical exponent v up to order 25 of interpolation expansion in 
this representation, and evaluate it using Pad~, Borel-Pad6, Borel--confor- 
mal-Pad~, and D log-Pad6 resummation. The resummation returns 0.6262(13) 
as the value of v. Our renormalization group uses canonical resealing, for which 
r/=0. 

KEY WORDS: Field theory; renormalization group; nontrivial infrared fixed 
point; critical indices; derivative expansion. 

1. I N T R O D U C T I O N  

Nontrivial  fixed points are a highly challenging aspect of renormal iza t ion 
theory. Much  of what  is known about  nontr ivial  fixed point  is due to the 
e-expansion of Wilson and Fisher [WF72,  W K 7 4 ] ,  which is an interpola-  
t ion from a critical dimension to the one of interest. In this paper  we pre- 
sent another  interpolat ion scheme where the dimension of the underlying 

(Euclidean) space-time is kept  fixed. 
A pro to type  of a nontrivial  fixed point  is the infrared fixed point  of 

massless ~4-theory in three dimensions,  also called Wilson fixed point  
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[WK74].  We choose it as an example for our method. Although it has 
been investigated by various other means, for instance by Monte Carlo 
simulations of the three-dimensional Ising model close to criticality, 
hopping parameter expansion, field theoretic perturbation theory for its 
scaling limit, and numerical integration of renormalization group flows in 
a number of setups, our knowledge of it is far from satisfactory. Accurate 
data is lacking both for its spectrum of critical indices and its anomalous 
dimension. Its functional form is largely unknown, in particular its locality 
properties, and its mathematical construction remains an outstanding dif- 
ficult problem. We mention E ZJ89 ] and references therein as a guide to the 
extensive literature. We mention further that all this has been accomplished 
to a very satisfactory status in the hierarchical approximation by Koch and 
Wittwer E KW91 ]. Our interpolation is a brick in the analysis of the full 
model. 

As starting point we choose a functional differential equation from the 
infinitesimal renormalization group of Wilson [WK74].  Specifically we 
choose a normal ordered and resealed representation for the fixed point 
interaction, expressed in terms of a scalar field with nonanomalous scaling 
dimension. It contains a bilinear renormalization form. This bilinear form 
is continuously turned on with an auxiliary parameter such that zero gives 
a linear theory and one restores the full equation. The linear theory is 
arranged such that the ~4-interaction acquires the scaling dimension zero 
in it. We then expand the fixed point interaction into a power series in the 
interpolation parameter. This part is similar to the e-expansion. In order to 
perform the expansion to high orders on the computer, the interaction is 
written in a basis of interactions which includes a general two point inter- 
action in derivative expansion together with local higher interactions. We 
compute both the fixed point interaction and the eigenvalue associated 
with a massive perturbation. The resulting power series are evaluated by 
means of Pad6, D log, Borel-Pad6, and Borel-conformal-Pad6 resumma- 
tion. 

The interpolation idea applies also to other renormalization schemes. 
The infinitesimal renormalization group is a particularly convenient one 
because it involves a minimal set of Feynman integrals. Interpolations in 
fixed dimensions can also be formulated for discrete renormalization group 
transformations both in continuum regularization and on the lattice, at the 
expense of dealing with general nonlinear rather than quadratic equations. 
It is conceivable that our interpolation can be given a meaning beyond 
perturbation theory. 

The paper is organized as follows. In section two we explain the 
structure of our particular functional differential equation. It is taken from 
[W96] and is the Wilson equation [WK74] in a kind of interaction 
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picture. In section three we present our interpolation scheme. It is 
compared to a naive interpolation which has only a trivial solution. We 
solve our equations to lowest order to explain their recursive treatment. In 
section four we discuss their form in a coordinate representation. The result 
is a set of algebraic recursion relations for the fixed point interaction. They 
involve a set of structure constants whose computation again involves 
certain Feynman integrals and multiplicities. We devote section five to this 
issue. In section six and seven the eigenvalue problem for the scaling fields 
of the nontrivial fixed point and their anomalous dimensions is treated 
along the same lines. We restrict our attention to a mass perturbation of 
the fixed point and the associated critical index v. In chapter eight and nine 
the resulting recursions are studied by means of computer algebra. 

Our renormalization group uses canonical rescealing. Thereby, the 
value of the anomalous dimension r/, defined by the decay of the two point 
function of the field ~ at the fixed point, is built in as r/= O. We conclude 
with a brief discussion of this issue. Interpolation expansions for the renor- 
malization group with anomalous resealing will be presented elsewhere. 

2. RENORMALIZATION GROUP FIXED POINT 

We consider a real scalar field ~ on three-dimensional Euclidean space. 
We use a momentum space renormalization group built from the decom- 
position of a massless propagator v with exponential ultraviolet regulator. 
The renormalization group will be formulated in terms of an interaction 
V(~). Concerning the general background, we refer to the work of Wilson 
[W71 ], Wilson and Kogut [WK74], and also to Gallavotti [G85]. Our 
setup will be identical with that in [W96]. 

We study the nontrivial infrared fixed point in three dimensions as 
solution to the functional differential equation 

which was derived in [W96]. Eq. (1) is a normal ordered and rescaled 
variant of the infinitesimal renormalization group due to Wilson [WK74]. 
Its origin is a flow equation governing the behaviour of interactions upon 
the infinitesimal change of a'floating cutoff. Eq. (1) gives stationary flows 
modulo the rescaling of units. The left hand side of (1) is a generator of 
dilatations 
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acting on the interaction. The field q~ is here rescaled non-anomalously with 
its canonical dimension at the trivial fixed point. It should be distinguished 
from the scaling fields of the infrared fixed point which have nonzero 
anomalous dimensions. The fight hand side of (1) is a bilinear renormaliza- 
tion group form 

v v(~,) v(~z) 
@l =~ =4, 

(3) 

It can be visualized as a sum of contractions between two copies of the 
interaction. Each contraction is made of one hard propagator Z and any 
number of soft propagators v. The propagators are here given by 

e-p: _ p 2  

2(P) = e , ~(P) - _2 (4) 
P 

as in [W96]. Eq. (1) is the main dynamical equation in this investigation. 
Being a differential equation, it has to be supplied with further data to 
select a particular solution. In a rigorous theory in the sense of Glimm and 
Jaffe [GJ87],  the infrared fixed point should come as a global Z2-sym- 
metric solution, where global refers to some criterion of finiteness. Our 
point of view in this approach will be more modest. An interaction V(~) 
will stand for a power series 

oo  

v(~)  = ~ ~ a~x,  �9 .. c l~x : . r  . . .  r  v: , , (x ,  ,..., x~.)  
n-----I 

(5) 

in the field, with symmetric Euclidean invariant distributional kernels given 
by Fourier integrals 

f d3p, d3pz,, ei(p,x, + . . .  +P2nX2n) V2,,(xi .... , Xz,,)= (-~nj'3""(2n)3 

• (27r) 3 O(3) (Pl  + " '"  + P z . )  ~ '2n(Pl  .... , P2n) (6) 

of smooth momentum space kernels. I.e., we identify an interaction with its 
collection of momentum space kernels. The question of convergence of the 
expansion (5) in powers of fields will not be addressed. It is conceivable 
that it could be tackled with a suitable norm on the collection of momen- 
tum space kernels as a whole. 

In the iterative approach to be defined below we will meet at finite 
order no more than polynomial expressions in the field. We will understand 
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(1) as a system of differential equations for the momentum space kernels. 
Its explicit form can be looked up in [W96]. Boundary data is substituted 
for by the condition of regularity. Homogeneous functions give particular 
kernels, which correspond to Scaling fields of the trivial fixed point. 
Expanding a kernel in powers of momentum derivatives, we can always 
express it in terms of such scaling fields. To distinguish them from the 
scaling fields of the nontrivial fixed point and also because we will use 
perturbation theory, we will speak of them as vertices. 

3. I N T E R P O L A T I O N  P A R A M E T E R  A N D  E X P A N S I O N  

Our strategy to solve (1) is to interpolate to a solvable situation. If 
the interpolation is smooth it can be performed by means of perturbation 
theory. A natural candidate is 

(.~r ~ ) V ( r 1 6 2  V(r z)) (7) 

with an interpolation parameter z -  0...1. It can be thought to turn on con- 
tinuously the bilinear form, which is identified as the source of troubles. 
The interpolation (7) is inappropriate for the following reason, when the 
dimension parameter is fixed to three. Expand the interpolated interaction 
as a function of the interpolation parameter in a power series 

oo 
V(r z)-- ~ zrV(r)(r (8) 

r=O 

Unfortunately there is little hope that (8) has a finite radius of convergence 
both in the case of (7) and the interpolation (15) considered below. To be 
cautious we will therefore view (8) as a formal power series and interpret 
all equations below in this sense. It will however be argued that nonpertur- 
bative information can be extracted by Borel resummation. In order to 
solve (7), the expansion (8) has to satisfy 

e l  

~r  g ( r ) ( r  2 =0(VCS)(q~llV~r- '- ' )(r  (9) 
s=O 

to every order r e N, with the understanding V ~-~ ~(q~)= O. In particular it 
requires the interaction to satisfy 
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to zeroth order. In other words, the zeroth order has to be a marginal 
scaling field of the trivial fixed point. In three dimensions we have two 
marginal scaling fields, a wave function term and a ~6-vertex, to be 
abbreviated as 

ca,, ,(~) = f cl~x ~(x) ( - ,a )  ~k(x), Cg~, o(~) = f d3x ~(x) 6 (11) 

We emphasize that vertices should be understood as momentum space 
kernels at zero momentum and their Taylor expansions. Each of them 
comes with a formal orthogonal projector ~ ,  t and ~3.0, selecting the 
corresponding vertex from a general interaction (5). The zeroth order has 
to be a linear combination 

v(~ = v ~~ e, (~)+ v(~ ~3 o(~) 1,1 ,1  " 3 , 0  , (12) 

The coupling constants are not determined by the zeroth order Eq. (10). 
To first order, (9) reads 

(~b ,  ~-~)V(~)(~)=(V(~176 (13) 

But Eqs. (12) and (13) together have only a trivial solution. The left 
hand side of (13) cannot contain the vertices (11) because the dilatation 
generator ( ~ ,  ~ /~ )  has no marginal image. Therefore, (13) requires that 

(14) 

Computing the bilinear form with two copies of (12) inevitably gives 
V(~ = -3.or~(~ =0. Eq. (7) is thus an inappropriate interpolation and has to 
be given up. 

A way around the obstacle is to interpolate simultaneously the dimen- 
sionality of the theory. This is the strategy of the e-expansion of Wilson 
and Fisher [WF72 ] in a field theoretic setup. Another way is to interpolate 
the scaling dimension, remaining firmly in three dimensions. We choose 
this second route and replace (7) by 

1 ,15, 
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The power series expansion (8) solves (15) if the coefficients satisfy the 
system of differential equations 

j r ,  
~r - 1 v(r)(r  -- E (V(S) ( r  I v ( r - - l - - s ) ( r  -- v(r--l)(r 

s = O  

(16) 

to all orders r e N. To order zero, (16) requires now 

I ( ~ r  0 - ~ ) - 1 ]  V~~162 -- 0 (17) 

in contrast to (I0). The zeroth order interaction is now a scaling field with 
unit scaling dimension. In three dimensions we have only one candidate, 
the r 

~,o(r f d~x r (18) 

The zel:oth order interaction thus has to be proportional to (18). The 
proportionality factor is the ~b4-coupling. It is not determined by the zeroth 
order Eq. (17). We conclude that 

v~~162 = v~~ e~ o(r - - 2 , 0  , (19) 

This expansion proves to have indeed a nontrivial solution. To see this, 
consider the first order equation in (16). It reads 

(20) 

Eq. (20) cannot have a r on its left hand side. Therefore it is 
required that 

~ ,o{ (v~~162  I v~~162 - v~~162 = 0  (21) 

Computing the bilinear form, this condition reads explicitely 

V ~~ ~(0) v~o) 1} 0 (22) 2,)o{ 144,~ * -2, o - = 

where �9 means convolution times (2zr) -3. Besides the trivial solution 
V (0 2,)o = 0 it has a nontrivial solution 

1 (2/1:) 3/2 
V(O) _ - ~  =0.21874445... (23) 

2, o -  1442 �9 ~(0) 72 
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The value of the ~4-coupling at any given order will in fact be determined 
by the equations at the next order, a feature of this particular interpolation 
expansion. To first order, the interaction can be split into 

V(~)(~) = V (~ ~ •  V(l)(~) (24) ~.~0~.o(~) + ~.0 

with ~ •  = 1 -  ~ 0 the projector on the formal orthogonal complement. 2,0 
Eq. (20) defines a system of first order differential equations for the 
momentum space kernels therein. They have a unique integral in the space 
of smooth functions of momenta, see [W96]. We denote this integral by 

~,o ~(~) = ~ ,  - 1 ~ v(~ ~,o(v(~ I )) (25) 

This iterative scheme carries on to every order of interpolation expansion. 
Consider Eq~ (16) at order r~> 2. The first step of the iteration is to 
compute V[~o ~) at order r - 1 .  Making use of (23), its value follows from 

v~r o ') ~. o(~)= --2~ . o(V(~ I ~ ~.o V(~ -' ~(~)) 

r--2 

- ~ ~2, o(V(S)(~) [ V(r- ' -s) (~))  (26) 
a - - I  

Again one splits the order r interaction into 

v(r)(~) = V ~'~ ~ '"  v(r)(~) (27) ~,o~,o(~) + ~,o 

and computes the formal orthogonal complement to the ~b4-vcrtcx by 
integrating the first order differential Eqs. (16). The result can bc written as 

]' ~ ;  g ( ~ ( r  ~ $ ,  - 1 2,0 

.l. V(S)(~ 1 ~.L v(r 1 x ~,o< )1  v ( r -  - s ) ( ~ ) ) _  2,0 - ) ( ~ )  

8 

(28) 

Thereafter it is time to proceed to the equations at order r + 1. For this 
scheme to work as above it is important that the kernel of (~$, 8 /8~ ) -  1 
be one-dimensional. Otherwise we would have to compute further order 
r - 1  data from the equations to order r. An example where this happens 
is the $4-trajectory in four dimensions [W96]. 

Although being in principle doable, the computation of this scheme to 
very high orders of interpolation expansion is a tedious enterprise. The 
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main work is the computation of a wealth of Feynman kernels generated 
in the course of iterations A lower order analysis of this program will be 
presented elsewhere. In this paper we choose to evaluate the expansion to 
high orders for a sub-class of contributions in the iteration. For this 
purpose we reformulate the fixed point Eq. (15) into an algebraic system of 
equations for a set of coupling constants. We find it interesting by its own. 
It also allows to perform the expansion on a computer. 

4. COORDINATE REPRESENTATION 

We choose a system of vertices (9~(~) labelled by elements i of an 
index set J .  The vertices will be required to be Z2-symmetric, Euclidean 
invariant, and linearly independent. They will also be required to be 
regular in the sense that they are given by smooth momentum space 
kernels. We choose the system such that the dilatation generator acts 
linearly on it through a scaling dimension matrix 

(~,8-~) (9/(~)= ~ ~.(~)Z~ (29) 
j e . t  

We restrict our attention to systems with the property that the scaling 
dimension matrix is diagonalizable. Non diagonalizable matrices will not 
be considered here. In this case, we can arrange the system to consist of 
eigenvectors 

( ~ ,  fi-~) 60i (~b) = cri (9, (~b) (30) 

In other words, we take (gi(~b) to be a scaling field of the trivial fixed 
point with scaling dimension o" i. Recall that such vertices are given by 
homogeneous momentum space kernels. Eq. (29) says that the system 
closes under the action of an infinitesimal dilatation. We also require it to 
close under the action of the bilinear renormalization group form. For any 
two vertices (gg(~) and ~.(~) the bilinear form (3) will be assumed to be a 
linear combination 

((.gi(q~) I (gj(q~))= ~ (.gk(~b) F k i.j (31) 
k e , I  

with a set of structure constants F ~ The scaling dimensions ai and t, j ~  

the structure constants F k comprise all the information needed in the i , j  
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following about the system of vertices. We remark that the structure 
constants are well defined through 

Fkjd~k(~)i, = ~ (  (~,(qb) I ~(q~) > (32) 

even when the system does not close under the bilinear form. In this case 
(31) holds only up to an error term. Below we will indeed work with an 
approximation of this kind and argue that the error term is small. 

We define a coordinate representation for the interpolated interaction 
in terms of a given system of vertices as 

V(qb, z)= ~ ~9~(q~) V'(z) (33) 

The idea is then to investigate the interpolation (15) for the infrared fixed 
point by means of the parameter dependent coordinates (33). Eq. (15) 
becomes a system of algebraic equations 

(crk-1) Vk(z)=z ~ F* Vi(z) VJ(z)-zVk(z) (34) i , j  
i, j e . ~  

in the coordinate representation. The advantage of (34) as compared to 
(15) is that we are no longer dealing with differential equations for 
momentum space kernels. Their integration is hidden in the structure con- 
stants. If the interpolation is smooth, we can expand the coordinate func- 
tions into power series 

at:) 

v k ( z ) - ~ "  E z r V k ' r  ( 3 5 )  

r=O 

By standard arguments (35) is expected to be singular but Borel summable. 
Our below evaluation of (35) supports this expectation. Eq. (35) yields a 
solution to (34) in the sense of a formal power series in z if the coefficients 
obey 

r - - I  
( a k - 1 ) V k' r ~- ~ ~ F k,, j [/'i, s v j ,  r - 1  - s __ v k ,  r - 1  (36) 

s--O i, j e J  

holds for all couplings k e J to all orders r e N of interpolation expansion. 
We organize (36) into a recursion relation which can be solved on the 
computer. To zeroth order (36) simplifies to the linear equation 

(o'1,- 1) V k'~ = 0  (37) 
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We assume that our system of vertices contains only one element labelled 
by k =2_ =(2,  0) such that a2 = 1. This element is of course the ~b4-vertex _ 
(18). All other elements are assumed to have scaling dimensions different 
from one. Then (37) implies that 

V k'~ = V z-'~ 6Z_,k (38) 

The value of V 2-' 0 is as above determined by (36) to order one, 

(ak-- 1) V k ' l  --- V2-' ~ F2_~,2_ V-2' ~  62, k) (39) 

Evaluating (39) for k = 2_ it follows immediately that we have 

1 
V2, o = F - - -~  (40) 

2 ,2  

besides the trivial solution V -z' o = 0. Eq. (39) does not tell the value of V z-' ~. 
But for k e J \ {  2_} it gives 

F k V2, O) 2 
2, 2( 

W "  = (41) 
a k - - 1  

Eq. (40) and (41) are of course the coordinate versions of (23) and (25). 
The strategy to any order r > 1 is again to first compute V 2-' r-~ and there- 
after V k'" for k ~ J \ {  2_}. The explicit formulas are 

r - - 2  
V ~'~-~ - 2  ~ F_2 V_Z, ow, r - t  ~-~ i ,  2 - -  Z Z Fz- V i " W ' r -  (42) "-- i , j  _ 

i~  ..~\{ 2} s " - I  i , j ~ J  

and 

- ~ , j  - ( 4 3 )  

O" k - -  1 .s=O i, j ~ , ~  

in complete analogy to (26) and (28). Thus once we know the scaling 
dimensions and the Structure constants, the iteration proceeds by means of 
purely algebraic operations. We remark that the sums in (42) and (43) will 
be finite in the system of vertices considered below. The reason is that the 
outcome of the bilinear form of two monomi~ilS in the field is a polynomial 
in the field of finite order, and consists only of connected vertices. A very 
interesting question is whether it is possible to find finite systems of vertices 
that close under both (29) and (31). It is clear that this cannot be achieved 
in terms of polynomial vertices. Unfortunately no such system is known in 
three dimensions. 



828 Wieczerkowski and Rolf 

5. STRUCTURE CONSTANTS 

We consider the following system of vertices. First we include a full 
two point vertex in derivative expansion. A convenient notation for it is 

(_91, ~ ( ~ ) =  f d3x q~(x) ( -z1)  a q~(x) (44) 

where 0c=0, 1,2, .... Second we include local (2n)-point vertices with 
arbitrary many external legs. They will be abbreviated as 

(.gn, O(q~) = f d3x ~(X) 2'' (45) 

where n = 2 ,  3, 4 ..... Notice that both (44) and (45) meet the demands 
stated at the beginning of the previous section. More general interactions 
include also momentum dependent higher vertices (45). They will not be 
considered here. our index set is thus 

J = { 1 }  x {~x6N I a~>0} u { n 6 N  [ n~>2} x{0} (46) 

and _2 =(2,  0). The bilinear form does not close under this set of vertices. 
For instance two local vertices (45) contract in general to a bilocal vertex. 
Thus if we perform an iteration (42) and (43) with this system of vertices, 
we make a systematic error due to the truncation of the system. Our ansatz 
rests upon the assumption that nonlocal higher vertices are small compared 
to their local parts. 

The scaling dimensions of (44) and (45) come out as 

o'l,~ = 2 -  2oq o',,,o = 3 - n  (47) 

The structure constants for this set of vertices come out as follows. 
Two quadratic vertices always contract again to a quadratic vertex. The 
associated structure constants are computed to 

( _ l ) = - a - y  
F ~1' ~) - 4 O~ (48) ~,~,~t,~,~- (~_/~_~,)! ,~+~, 

where O~,b = 1 for a i> b and zero else. A quadratic vertex and a higher 
vertex return upon pairing both a quadratic vertex and a higher vertex. 
First we have 

F~I  , Y' - 2 4 R ' , ,  ~ ( 0 )  ~, o0, (2. O) ~ ,0 (49) 
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The structure constant (49) involves the one loop integral 

R~ =(p)= f d3q q2)= 
. (2zt)3 f(q)( 2(P - q) (50) 

at zero momentum. Recall that the propagators are given by (4). The 
exponential regulator gives a convergent integral which is evaluated in 
(58). Second we have a one loop contribution 

r~m-,,o~ - 4 m ( Z m -  1)Rl,~(O) (51) 
( 1, 0t), ( m ,  0 )  

as well as a zero loop contribution 

F~m, o) - 4 m  ~ (52) 
( 1, 0t), (m ,  0 )  - -  , 0  

This last pairing also contributes to momentum dependent higher vertices 
which we neglect. Two higher vertices yield upon pairing both a quadratic 
vertex and higher vertices. One quadratic term is 

~'~Y~ 2(0) (53) F ~l'r) - 2 n ( 2 n -  1)(2n)!-L2n - (n ,  0),  (n ,  0 )  - -  

with the ( 2 n -  2)-loop (the number of soft propagators v) integral 

R2,_ 2(p) = ~ * - ' - *  ~ * 2(p) (54) 

expanded into 
oo 

K2~-2(P) = ~ (p2)~ R~_2(0)  (55) 
0 t - ' 0  

at zero momentum. A second quadratic term is 

F tl" r) = (n - 1)(2n)V K2n 2(0) t~ 7 o (56) ( n ,  0 ) ,  ( n  - 1, 0 )  �9 - , 

This second term is exactly local. The general higher vertex content of the 
pairing of two higher vertices is summarized in 

rl~,o, = (2n)! (2m)! 
O),~m,O) (n+m--l--1)! (m+l--n)[ (l+n--m)! 

XRn~m_l_l(O ) On+m.l+lOm+l, nOl+n,m (57) 

This last set of structure constants (57) alone defines a local approximation 
for the renormalization group fixed point. As mentioned above, the general 
outcome of the pairing of two higher vertices also contains momentum 
dependent vertices which are not encorporated in (57). All other structure 
constants between vertices in J are zero. 
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The one loop integral (50) is evaluated to 

~ 1 
K,,.(O) =-~-~z 2'/z-=F( a + 1/2) (58) 

The/-loop integral (54) is computed as a function of the external momen- 
tum squared to 

Kt(P) = (4/z) -3t/2 dOCl . . .  doct A -3/z e x p  pZ 
1 

(59) 

with the abbreviations 

1+1 l 
A= Z H 0Cn' Bm H (Xm (60) 

m =  1 n o r a  m =  1 

where 0q+, = 1. Its momentum derivatives at zero can be reduced further to 
a one-dimensional integral 

1 ( -1 )~  ; :  J'erf(~)~'  
R~=~(O) - (8zr)' oc! F(oc + 3/2) dxx"+ '/2e-X [ 7 j (61) 

This remaining integral can be done explieitely at least in the one-loop 
ease. We evaluated it in the general ease numerically to high accuracy 
(45 digits) on the computer. 

6. EIGENVALUE PROBLEM FOR CRITICAL INDICES 

The fixed point Eq. (1) comes together with an eigenvalue problem 

] ~b,~-~ - 2  W(q~)=2< V(~b)] W(q~)> (62) 

defining scaling fields W(~b) and their anomalous dimensions 2. We 
emphasize that W(~b) is a composite field of ~. The spectrum of anomalous 
dimensions is the object of principle interest associated with a fixed point. 
It directly determines the critical exponents, see Wilson and Kogut 
[WK74]. 

The interpolation (15) is accompanied by an interpolation of (62), 
given by 

[ ( ~ q S , ~ ) - A ( z ) ]  w(ck, z ) - 2 z <  V(ck, z) l w(05, z)> (63) 
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Eq. (63) can be solved by means of perturbation theory. We expand not 
only the interaction (8), but also the sealing field and its anomalous dimen- 
sion into power series in the interpolation parameter, 

oo oo 

W(~,z)= ~ z~W(~ 2(z)= ~ z~2 (~) (64) 
r = O  r = O  

We interpret (64) in the sense of a formal power series. It yields a solution 
to (63) if the coefficients satisfy the system of differential equations 

~ck, W(r)(ck) - 2(s)W('-')(~) = 2  2 (V(')(~b) I W('- l- ' )(~b))  
s - - O  s - - -O 

(65) 

This system can be integrated iteratively. To order zero, (65) becomes the 
eigenvalue problem 

[ (~, ~)_2(o)] w(o)(~) = 0  (66) 

The zeroth order W(~ thus has to be a scaling field of the trivial fixed 
point, and 2 (~ has to be its scaling dimension. With each scaling field of 
the trivial fixed point is therefore associated in perturbation theory a 
scaling field of the nontrivial fixed point. 

Let us consider for definiteness the perturbation associated with a 
mass term 

W~~ = (9,, o(dp), 0,. o(Ck) = f d3x ~b(x) 2 (67) 

Then the zeroth order eigenvalue is of course 2(~ a~. 0 = 2. As a perturba- 
tion of the nontrivial fixed point, (67) turns out to be relevant. The 
associated nontrivial renormalized trajectory in the sense of [W96] 
describes the renormalization group flow of a nontrivial massive field 
theory. Associated with it is the critical exponent 

1 
v = -  (68) 

2 

The mass perturbation (67) is nondegenerate in the sense that the kernel 
of (@~b, ~ / & k ) -  2 is one-dimensional. The formal orthogonal projector on 
this one-dimensional kernel is ~l, o. Another nondegenerate perturbation is 
the scaling field associated with (92, o(~). The ones associated with (9~, ~(~b) 
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and (.03. o(q~) on the other hand form a degenerate marginal duplet. We will 
restrict our attention to the nondegenerate case for the sake of notational 
economy. The kernel of ( ~ ,  ~ / ~ ) - 2  (~ will thus be assumed to be one- 
dimensional. The formal orthogonal projector on this rank one kernel will 
be denoted by ~. To first order (65) becomes the differential equation 

')(~b)-2(')W(~176 W(~ (69) 

The first order correction to the eigenvalue follows from (69) by projection 
with ~'. We have that 

/ ~ ( l ) W ( ~  = -2~(V(~ I W'~ (70) 

Spelled out explicitely for the mass perturbation (67), Eq. (70) says that 

- 1  
2 (1) --482" ~(0) v(O) -- . ,  (71) 

- -  --2, 0 ~ 3 

It is amusing that this first order correction can be inferred without having 
to compute the convolution integral, because the convolution integral in 
(71) is canceled exactly by the one in (23). Next we impose the normaliza- 
tion condition that 

~ I~')(q~)=0 (72) 

This condition is appropriate in the nondegenerate case because (70) 
already takes care of the ~-information contained in (69). The orthogonal 
complement is then integrated as in the case of the interaction. The 
outcome is 

~ W~' ~(q~) = 2 [ (~b ,  ~ )  - 2~~ - 
1 

~•176 [ W(~ (73) 

This scheme carries on immediately to every order of interpolation 
expansion. Projecting (65) to ~,  we first deduce that 

r - - I  
2 ( r ) w ( ~  = 2 Z ~i~(V(S)(~)  [ w(r-l-s)(~))  (74 )  

s=O 

This equation determines the order r eigenvalue in terms of lower order 
data. Generalizing (72), we impose the normalization condition 

~ l~r)(#) =0  (75) 
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for r >t 1. Then to order r we are left with the computation of 

• 2(s)~• "b2 2 ~ i ~ / ( V ( S ) ( ~ ) I  w ( r - l - s ) ( ~ ) )  
s - - I  s=O 

(76) 

This scheme iterates to every order of interpolation expansion. Recall that 
the inverse of the dilatation generator in (76) involves the integration of a 
first order partial differential equation. As in the case of the fixed point, the 
explicit computation of this program to very high orders requires con- 
siderable computational resources. In this paper we restrict our attention to 
a partial resummation by means of our coordinate representation. 

7. E I G E N V A L U E  P R O B L E M  IN C O O R D I N A T E S  

In this section we perform the interpolation expansion for the 
eigenvalue problem (63) in the coordinate representation. The coordinate 
representation for the scaling fields reads 

W(r z )=  ~ 0~(r W~(z) (77) 

In the coordinate representation, the eigenvalue problem (63) becomes a 
set of algebraic equations 

( a k -  2(z)) Wk(z) = 2Z ~ F k Vi(z) WJ(z) (78) i,j 
i, jeor 

It can be solved recursively in an interpolation expansion 

oo 
Wk(z) --~ ~ zrwk 'r  ( 7 9 )  

r---O 

The power series (35), (64), and (79) yield a solution to (78) provided that 
the coefficients satisfy 

(O.k__ 2(0) )  wk, r 2(r) wk, 0 

r - - I  r - - I  
= Z 2's)wk'r-'+2 Z ~ Fki, j W " W  j 'r- l -"  (80) 

s =  1 s--O i, j e J  

822/89/3-4-23 



834 Wieczerkowski and Rolf 

As in the case of the interaction, the system of Eqs. (80) can be organized 
into a recursion relation. To order zero (80) reads 

(ak--2  (~ W k'~ = 0  (81) 

It tells us that we should select one of the k e J as zeroth order eigenvector. 
We choose 1 = (1, 0) for definiteness. Then the zeroth order is 

= 2 0 ) W k'~ d!,k, =o ' !=2  (82) 

The only k with a ,  = 2 is k = 1. We will again restrict our attention to this 
nondegenerate case. The below reeursion relation is valid for general non- 
degenerate perturbations, with minor notational changes. The first order 
equation in the system (80) is given by 

(ak--2  (~ Wk' I --2(I)W k'~ = 2F~. ! V ?'~ (83) 

Therefrom it follows that the first order correction to the eigenvalue is in 
the coordinate representation 

= V 2 .  o 3. (l) - 2F-~, I (84) 

We remark that in the degenerate ease, the degeneracy is typically lifted by 
the first order correction to the eigenvalue. The other coefficients to first 
order are 

W!,' = 0  (85) 

and, for k e J \ {  1}, 

W k" ~= ~ 2 F z k '  ~ (86) 
(7 k __ ~ ( o )  

This computation generalizes immediately to higher orders. The formula 
for the order r eigenvalue in terms of lower order data is 

r - - I  

2 (r) = -- 2 Z Z F!i,2 V i ' s w J ' r - ' - s  (87) 
s----O i, j ~  J 

The order r eigenvector is then given by 

w-',~=o (88) 
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for r t> 1, together with 

- ~ a k _  2(o ) 2(~)W k''-~ + 2 ~ Fki, j Vi'swJ'r-l-s (89) 
s 1 s = O  i , j ~ J  

for k ~ J \ {  I }. Eq. (87), (88), and (89) define a recursive perturbation 
expansion for the critical indices of the nontrivial fixed point. 

8. COMPUTATION OF THE RECURSIONS 

We computed the z-expansion for the potential recursively by means 
of (42) and (43), and for the eigenvalue problem by means of (87) and (89) 
using computer algebra. We restricted our attention to the case of three 
dimensions. It turned out to be crucial to compute the structure coefficients 
to high accuracy. We calculated them to an accuracy of 45 digits with 
Maple V. The perturbation expansion was performed up to a maximal 
order of 25. The derivative expansion was performed up to 0~ma x - - "  20 orders 
of p2 in the 2-point vertex. Table 1 shows the series for the ~4-coupling 
both in the ultra-local approximation 0~ma x " - - 0  and for 0~ma x ~--" 4 up to the 
order z ~. The coefficients prove to increase in absolute value proportional 
to C"n! with some constant C Their signs alternate. From this behavior we 
conclude that the series does not converge but is Borel summable. A proof 
of local Borel summability will be presented elsewhere. The constant C is 
related to an instanton singularity of the Borel transform on the negative 

Table 1. Examples for the Behavior of the 
Expansion Coefficients 

n V I") = 0  r,'(-) = 4  2. 0 ,  r  " 2 ,  0 ,  r  
,, _ 

0 2 .1874 .10  - I  2 .1874 .10  - !  

1 4 .5814 .10  - I  4 .5814 .10  - I  

2 - 8 . 7 1 7 1 . 1 0  - i  - 8 . 6 7 6 1 . 1 0  - I  

3 4 .6575 .10  ~ 4.6815- 10 ~ 

4 - - 4 . 0 5 5 3 . 1 0  i - - 4 . 0 5 4 6 . 1 0  I 

5 4 .2980.102 4 .2992.102 

6 - 5 . 2 1 1 7 . 1 0 3  - 5 . 2 1 3 0 . 1 0 3  

7 7 .0118.104 7 .0133.104 

8 - 1.0267.106 -- 1.0269.106 

9 1.6155.107 1.6158-107 

10 - 2 .7080 .10  s - 2 .7084 .10  s 

11 4 .8059.109 4 .8066.109 
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Examples for the Behavior of the Mass Coefficients 
at Order z TM for am.x=5 and am,x= 10 

vtlo) 5 v(Io) 10 
(X --2 .  0t, (Xmax ~ - -2 .  0t, tXmax 

0 - 1.08730107.105 - 1.-8730280- 105 
1 - 7.30254527- 104 - 7.30254464.10 4 

2 9.42673139.103 9.42673053.103 
3 - 1.47739400- 103 - 1.47739385.103 
4 2.14057814.102 2.14057791.102 
5 -2.79810089.10 ! -2.79810056.10 I 
6 0.00000000.10 ~ 3.33201984.10 ~ 
7 0.00000000 �9 10 o - 3.703141 64.10 - i 
8 0.00000000.10 ~ 3.99772841.10 -2 
9 0.00000000.10 ~ -4.43094961.10 -3 

10 0.00000000.10 ~ 5.30798357.10 -4 

real axis. It can be seen as an accumulation point of poles when the series 
is converted into various Pade approximants. The derivative expansion on 
the other hand proves to converge. This is illustrated in Table 2 for two 
values of ~max. We note in passing that the difference between ~max = 5 and 
~ma~ = 10 is small. 

The spectrum of the nontrivial fixed is computed along the strategy 
explained in Section 6 and 7. It requires as an input the fixed point interac- 
tion in z-expansion. We evaluated it for all values of ~m~ inbetween zero 
and twenty. In the following we will concentrate on an estimate of the 
critical index v (68) by resummation of the series for all these twenty one 
approximations. We computed the series by means of (87) and (89) to 
order twenty five of z-expansion. 

Table 3 shows as an example the series for the eigenvalue 2 in the 
ultra-local case ~ma~ = 0 and in the case of ~m~ = 4 up to the order twelve 
of perturbation theory. Again the series alternate, and the coefficients grow 
in absolute value as C"n!. The series are therefore not expected to converge. 
We remark that a proof  thereof is however missing. The Borel transform 
of a series with this asymptotics has a finite radius of analyticity R~m~x. It 
is determined by an instanton singularity on the negative real axes of the 
complex Borel plane. This radius of analyticity is an interesting quantity. It 
can be investigated by a number of methods, see [DI89]  and references 
therein. One of them is the Pad6 method. Recall that  the Pad6 approxi- 
mant of order (l, m) for a function f is a rational function f t . , , , (z )=Pt (z) /  
Q,,,(z). Here Pt and Q,,, are polynomials of degree I and m respectively, 
determined such that the taylor expansions o f f  and ft. ,~ agree up to order 
z/+". One then observes that the poles of the various possible Pad6 



3D Nontr iv ia l  Scalar IR Fixed Point 

Table 3. Series Coef f ic ients  for X up to Order 12 for 
am, x = 0 and am,x = 4 

i 

2", ~m.x 0 2", 4 ~'~ ~ ' m d x  - - -  
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0 2.000000.10 o 2.000000.10 o 

1 - 3 . 3 3 3 3 3 3 . 1 0  - I  - 3 . 3 3 3 3 3 3 . 1 0  - I  
2 - 3 . 4 9 0 6 5 9 . 1 0  - l  - 3 . 4 9 0 6 5 9 . 1 0  - !  
3 1.148993.10 o 1.159189.100 
4 -7 .414413 .100  -7 .369227 .100  

5 6.358855.10 - !  6.358630.10 ! 
6 -6 .649232 .102  -6 .646081 .102  
7 7.999490.103 7.996744.103 

8 - 1.070838.10 s - 1 . 0 7 0 5 3 2 . 1 0  s 
9 1.562548.106 1.562166-106 

10 -2 .452524 .107  -2 .452002 .107  
11 4.103373.108 4.102601.108 
12 -7 .271917 .109  -7 .270698 .109  

approximants accumulate around a cut or a singularity off .  With the Pad6 
method we found 

R~ m.x = 0.88 + 0.02 (90) 

with no significant dependence of 0Cmax. Figure 1 shows a plot of all poles 
of all Pad6 approximants (B,Z)t,m with 1 + m = 25 in the complex Borel 
plane for the two cases ~max = 0 and 0Cm~x = 4 respectively. Here B2 denotes 
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0 k .  
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Fig. 1. Radius of convergence of B2 by the Pad6 method for ~mdx = 0 and 0c,,.~x = 4. 
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the Borel transform of 2. As expected, the poles accumulate on the negative 
real axes. Notice however that there are many spurious singularities on and 
nearby the positive real axes. These spurious poles endanger the inverse 
Borel transform as a contour integral along the positive real axis. The 
pictures for =max = 0 and tXma x = 4 show tiny differences. For instance, the 
poles on the positive real axis are not on fixed locations and can therefore 
be regarded as spurious. 

9. D E T E R M I N A T I O N  OF v 

To compute the value of the critical index v, we have to evaluate the 
z-expansion at z = 1. Naive evaluation does not give a meaningful answer 
since the expansion does not converge. Therefore we had to rely on resum- 
mation technology. A review of series resummation and references to the 
original literature is given in [ ZJ89] and [ DI89 ]. We tried four standard 
methods and compared the results. 

First we computed (for all values of tXma x between zero and twenty) all 
P a d ~ . a p p r o x i m a n t s  (2)t,m with 1 + m ~< 25, and evaluated them at z = 1. 
These values are conveniently displayed in a Pad6 table (l-m grid). To get 
an idea for the value of 2 and an estimate for the error we computed the 
mean value and deviation for the lines of fixed order in z(l + m = const) in 
these diagrams after having discarded all values below a lower value "]'min 
and above an upper value 2max. The idea thereof is that large deviations 
come from spurious singularities. We were careful not to choose the 
window too narrow. Our error estimate should be regarded as rather 
pessimistic. If these mean values converge with increasing order in z we use 
them and an inspection of the whole table to find an estimate for the value 
of v. 

In the second method (D log) one computes the Pad6 approximants 
for the logarithmic derivative 2'(z)/2(z). 2 is then reconstructed as the 
exponential of an integral 

i],!, m = 2 ( 0 )  e jl~ l~ (91) 

The integration can be performed numerically to high accuracy. The D log 
method is particularly efficient when the singularity is of the type 2(z )=  
A/(x-Xc)  y with a nonintegral exponent y. 

The third proposal is to use a Pad6 approximants for the Borel trans- 
form of the series. The Borel transform of a power series f ( x ) =  Y'.,~>o f,,x" 
is defined by 

(Bf)(z) = , ~ o  f" ~" z" (92) 
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The Borel transform of power series with finite radius of convergence 
defines an analytic continuation of the function to a maximal simplex 
through the integral 

f ( x )  = dt e - ' ( B f ) ( x t )  (93) 

Again we get Pad~ tables of approximants for 2 by numerically integrating 
this back transformation for various Pad~ approximants of B2. 

The off diagonal estimates in these tables can be improved by using 
information on the analyticity properties of the Borel transform. B f  could 
for instance have a cut along ( -  oo, - R ]  on the negative real axes. Let us 
assume that this is indeed the case (with R=0 .88  +0.02). Then the cut 
plane can be mapped conformally via 

x / z /R  + 1 - 1 4Ru 
U(Z) = ; z = ~  (94) 

+ 1 + 1 ( 1 - u) 2 

onto the unit circle. Under this mapping (Bf)(z)  transforms to (Bf)(u) .  We 
then use Pad~ approximants for the mapped series. A Pad~ table for 2 is 
obtained via the inverse transformation 

;~ 1 -[" U --4Ru/( I 
'~l,m = 4R du (1 - u) '3 e -u)2(Bf)l,m(U ) (95) 

The outcome of this method relieves on a careful estimate of the radius of 
convergence of the Borel transform. For  each 0Cm~,x. we calculated three 
estimates for 2, one for our estimated value of R and one for R + A R and 
R - A R  respectively, where AR means the error in our estimate for the 
error of the radius. The inspection of all three Pad~ tables yields 2 and an 
error estimate. 

We also tried out inhomogenous differential approximants, but 
we could see no improvement as compared with Pad~ or D log Pad6 
approximants. The integration of the differential equations in this method 
turned out to be both time consuming and fragile due to the poles close to 
the origin. 

In Table 4 we summarize our results for v for the different values of 
0~max. The errors refer as usually to the last digit. We come to the following 
conclusions. The Pad6 method is the least precise one with an error of 
about 0.01. From it we can get an idea about the value of v, but no 
accurate estimate. The errors of the D log Pad~ method (D log ) and the 
Borel Pad6 method (BP) are of comparable size. The Borel Pad~ method 
with conformal mapping (BPconf) has the least errorbars. At higher orders 
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Table 4. Results for the Critical Exponent v with the Padd Method, the D log 
Pad6 Method (D log), the Borel Pad6 Method (BP), and the Borel Pad6 
Method with Conformal Mapping (BPconf) the Various Orders of the 

Derivative Expansion of the 2-Point Vertex 

0Cm.,, V Pad6 v D log v B P v B Pconf 

0 0.6630( 20 ) 0.6640( 10 ) 0.6599(30) 0.6630(30) 
1 0.6200( 150 ) 0.6180( 50 ) 0.6150(70) 0.6100( 1 O) 
2 0.6340( 130 ) 0.6290(40 ) 0.6264( 18 ) 0.6300( 1 O) 
3 0.6300( 110 ) 0.6220( 40 ) 0.6220( 70 ) 0.6200( 40 ) 
4 0.6320( 90 ) 0.6260(30) 0.6286(68) 0.6260( 1 O) 
5 0.6300(100) 0.6260(40) 0.6240(50) 0.6256(10) 
6 0.6330( 1 O0 ) 0.6260( 40 ) 0.6290( 40 ) 0.6270( 10 ) 
7 0.631 O( 110 ) 0.6280(70) 0.6220(60) 0.6260( 20 ) 
8 0.6330(90) 0.6230(70) 0.631 O(60) 0.6266(4) 
9 0.6290(90) 0.6260( 80 ) 0.6230( 60 ) 0.6220( 40 ) 

I 0 0.6330( 90 ) 0.6260( 40 ) 0.6320(70) 0.6286( 3 ) 
11 0.6300( 110 ) 0.6260(50) 0.6200(150) 0.631 O(50) 
12 0.6310(150) 0.6260(60) 0.6340(60) 0.6305(25) 
13 0.6280(120) 0.6260(80) 0.6200(200) 0.6350(60) 
14 0.6360(110) 0.6270(50) 0.6410(80) 0.6440(30) 
15 0.6330(100) 0.6250(60) 0.6200(180) 0.6440(30) 
16 0.6340(200) 0.6310(40 ) 0.6520(50) 0.6300(50) 
17 0.6250( 150 ) 0.6270( 200 ) 0.6320( 200 ) 0.6259( 40 ) 
18 0.6380(60) 0.6380(110) 0.6549( 58 ) 0.6590(160) 
19 0.6420(150) 0.6000(400) 0.6060(130) 0.6240(70) 
20 0.6420(80) 0.6420(200) 0.6550(40) 0.6430(160) 

of the derivative expansion of the 2-point vertex the errors increase 
significantly. To display this effect, we have plotted the data of Table 4 in 
Fig. 2. One can see that the values for v oscillate around a mean value. 
Up  to a certain order this sequence seems to converge. Thereafter, the 
difference between V(0~max) and V(0Cmax § 1) and the error grows. 

We believe this effect to be the consequence of a numerical instability. 
In high orders of derivative expansion and high orders of perturbation 
theory one is dealing with numbers of enormously varying magnitudes (in 
our case one hundred orders). In practice we computed our series to an 
accuracy of 45 digits, and a problem arises-in the cancellation of large 
numbers in the course of the recursion. A more destructive explanation 
would be that the resummation fails to produce a convergent derivative 
expansion, or even more desastrous that the non-perturbative kernels are 
not analytic functions of the momenta. The final answer to this question 
can only be given on the basis of a nonperturbative construction of the 
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Fig. 2. The critical index v as a function of the order of the derivative expansion of the 
2-point function 0~md~ for the four extrapolation methods. 

fixed point and is outside the scope of this paper. Our insight comes from 
the evaluation of various approximants to different orders of accuracy. 

We confine our further discussion to those values of 0Cma x which lie 
before the onset of instability. The D log method and the B Pconf method 
both yield nearly constant values for v at orders between 0Cmax=4 and 
0~ma x " -12  and between 0~ma x "--4 and r x = 8 respectively. We propose this 
value to be the limit of v at arbitrary order of the derivative expansion. 

Consider the data for the ultra-local case 0Cmax = 0 and to first order 
~max = 1 of derivative expansion. For  the ultra-local case, which can be 
compared with the hierarchical model (v = 0.6501625, [ KW88 ]) we find 
v = 0.6625(33) which is bigger than the full critical index. Disregarding the 
pure Pad~ estimate, we get for ~max = 1 the result v = 0.6144(62). This value 
is considerably lower than the value at ~max = 0 and even lower than the 
full critical index. In view of the tiny differences between the fixed point 
coefficients at r and r x #0,  we  find this surprising. Compare for 
example the coefficients in Table 1. 
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Table 5. Results for the Critical Exponent v of the Full Model 

v Method Literature 

0.6300(15) three dimensional renormalization group [ GZJ80 ] 
0.6298(7) [BB85] 
0.630 [ N91 ] 
0.6305(25) renormalization group, e-expansion [ GZJ85 ] 
0.6301 high temperature series [ R95 ] 
0.6300(15) high temperature series for bcc-grid [ NR90 ] 
0.6289(8) Monte-Carlo methods [ FL91 ] 
0.6301(8) [BLH95] 
0.625( l ) Monte-Carlo renormalization group [ GT96 ] 
0.626(9) Scaling-field method [ NR84 ] 

At higher orders of derivative expansion, the values for v oscillate and 
converge to a mean value. The limit value has been determined as the mean 
values of v over the nearly constant plateaus. As best estimate for the 
BPconf method we get v=0.6262(13). The D log method yields v =  
0.6259(57). These results should be compared with the critical index v of 
the three-dimensional Ising model in the literature. In Table 5 we list a few 
results for v. A comprehensive article on this issue is [BLH95].  It also con- 
tains an overview of experimental data. With series expansion and Monte 
Carlo methods one gets v=0.630. On the other hand the Monte Carlo 
renormalization group suggests v = 0.625. This gap is object of current dis- 
cussions. Our value is closest to the value of [NR84]  and [GT96].  

10. S U M M A R Y  OF T H E  z - E X P A N S I O N  

In this article we investigated a form of Wilsons infinitesimal renor- 
rnalization group The starting point was Eq. (1). We found a practical way 
to solve the equation in a systematic manner. The central idea was to 
introduce an interpolating parameter z, which continuously turns on the 
nonlinear term in (1). Everything was expanded in this parameter. The 
interpolation was arranged such that the zeroth order is a ~4-vertex. The 
expansion was presented both in a coordinate free representation and in 
coordinate form, where the interaction is expanded in a basis of vertices. As 
a basis we advocated the use of a full two point interaction in derivative 
expansion together with local vertices of any power of fields. Derivative 
interactions of higher powers were neglected. The basis of interactions 
came encoded in a system of scaling dimensions and structure constants. 
Their evaluation was reduced to a one-dimensional Feynman integral 
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which we evaluated numerically. We reformulated our expansion into 
recursive equations for the fixed point interaction, its scaling fields, and 
their anomalous dimensions. We performed a detailed analysis of the series 
for the critical exponent associated with a massive perturbation of the 
fixed point. The result is a new and independent calculation of the critical 
index v of the the three-dimensional Ising model. We solved the recursion 
relations for the eigenvalue problem up to high orders and analyzed the 
resulting series by means of four different extrapolation methods. Our best 
estimator for the critical index v is v = 0.6262(13). We compared our results 
with values for the critical exponent v known in the literature. 

The results encourage us to further investigations. On the menu of 
open problems we have the inclusion of momentum dependent higher 
vertices for the scalar model, theoretical estimates on the z-expansion, and 
the generalization to vector and matrix models. We hope to return with 
accurate data on their critical properties by means of z-expansion in the 
near future. 

11. THE A N O M A L O U S  D I M E N S I O N  I1 

We use a renormalization group transformation which rescales the 
field ff canonically. The anomalous dimension r/ of the field q~ is conse- 
quently zero at our fixed point. In z-expansion this can be seen as follows. 
We computed the scaling field associated with the one point function 

rv(ck, z) = ~ d3x ~(x) + O(z) (96) 

Its eigenvalue comes out as the canonical value 1 + D/2 = 5/2, independent 
of z. All higher orders in z cancel out exactly. This can be shown both in 
the full z-expansion and also in our approximate evaluation. Therefore, r/ 
is zero to any order of z-expansion. 

Our understanding of an anomalous dimension is the following. The 
origin of an anomalous dimension r/, different from zero, is a symmetry of 
the renormalization group, associated with a globalwthat is space-time 
independent--rescaling of the field. In our setup this symmetry is known 
explicitely. Our fixed point equation reads (zero equals to) 

{ 1 } 
R,E" V:,,](4,)= ( E ~ - I  +z] 0, a0)+~(6~,,/"6,o) "v(q,,).~ 

z 
- ~  (a e, "V(~'): v, FO e, �9 V(~,)',,) (97) 
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where F =  22' and v = 2 ' / ( - d ) .  The functional operator R~ generates the 
interpolated renormalization group. The rescaling symmetry is generated 
by 

u[. = + �89 �9 

I -�89 "V(~p):o,F'6~, "V(~p)'~)+~(~p, (-A)~#) (98) 

where ~ ' = -  1/2 + X and F '  = X ( 1 - X ) / ( - A ) .  It commutes with R~, but it 
does not commute with R~ for z < 1. In other words, our interpolation 
explicitely breaks the resealing symmetry. A fixed point with anomalous 
dimension is a solution of 

R : [  : : (99) 

at z =  1; in conjunction with a normalization condition on �9 V(~):o which 
breaks the rescaling symmetry. Formal power series solutions (in z) thereof 
exist for all values of r/. The question of symmetry restauration at z = 1 is 
thus beyond formal z-expansion. We have chosen r/= 0 in this situation. It 
can be viewed as the zeroth approximation in a double expansion in both 
z and r/, the latter being possible after interpolation. A standard proposal 
for how to determine r/is to demand an eigenvalue zero in the spectrum of 
the fixed point. This question arises when one computes order r/corrections 
to our scheme. We postpone it to subsequent work. 

Although it seems unlikely to us, there remains the possibility of a 
nontrivial infrared fixed point without anomalous dimension. A recent 
construction of Brydges et al. [BDH97] provides an example where this 
happens. 
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